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ABSTRACT 

We study three eigenvalue problems oi boundary layer theory first 
introduced by Fox and Libby,' and pursued further by Kotorynski. ^   By 
completing Kotorynski's approximate analysis,  we exhibit approximate 
eigenvalues and norms.    With these,   the convergence of the eigenfunction 
series solutions of two heat transfer problems can be investigated:    (a) Flat 
plate with one constant wall temperature region followed by another,   (b) Flat 
plate with a constant wall temperature region followed by an insulated wall. 
The series for problem (b) is found to converge everywhere,   including at 
the station of change in the boundary condition.    The series for problem (a) 
does not converge at that station,  and convergence for both appears slow 
near that station.    Then we improve Kotorynski's approximation and use 
the WKB method to obtain simple formulas for the eigenvalues,  which prove 
very accurate,   and enable the eigenfunctions to be found by a simple forward 
integration.    Finally,  we study problem (b) in more detail,  and obtain an 
exact solution by a numerical finite difference procedure.    This shows the 
eigenfunction series solution to be very slowly convergent near the beginning 
of the insulated region.    The solution worked out by Durgin   '       based on 
Lighthill's'* approximate method,   is very accurate there.    In addition,   it is 
within 10% of the numerical solution everywhere.    It is undoubtedly the most 
convenient representation of the solution,   agreeing both with the new numeri- 
cal solution,   and with Durgin's experiments. 
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I.    INTRODUCTION 

i 
Fox and Libby   have developed perturbation solutions to the momen- 

tum and energy equations of laminar boundary layer theory.    The momentum 

solutions are perturbations of the Blasius flat plate solution.    Among the 

energy solutions are those for initial value problems with the Blasius veloc- 

ity field and either constant wall enthalpy,  or zero heat transfer,  downstream 

of the initial station. 

In their investigations.  Fox and Libby formulated three eigenvalue 

problems:    (1)  For the perturbation of the momentum equation caused by 

initial values differing from the Blasius profile; (2)  for the initial value 

energy problem with constant wall enthalpy;   (3)  for the initial value energy 

problem with zero heat transfer.    In each case they found the first ten eigen- 

values,  norms,  and eigenfunctions by a numerical searching procedure. 

Subsequently Libby    recalculated the eigenvalues and norms for problem (1) 

and added the next ten sets of values. 
3 

Kotorynski    has considered these three eigenvalue problems analyti- 

cally as irregular Sturm-Liouville systems.    He reduced them to normal 

form and approximated the coefficient function by the sum of its principal 

terms near the wall,  and far from the wall.    He pointed out that the resulting 

equations could be solved in terms of Laguerre polynomials,  and found approx- 

imate expressions for the eigenvalues.    The resulting eigenvalues are not 

particularly accurate,  the twentieth for problem (1) being 4. 3% higher than 

Libby's computed value.    Kotorynski did not use the boundary conditions to 



find explicitly the approximate eigenfunctions or the norms,  to compare 

with Fox and Libby's numerical values. 

The purpose of thv prrsent paper is three-fold: (1) To extrnd DM 

approximate eigenvalue results of Kotorynski to include the approximate 

eigenfunctions and norms,  and investigate the convergence of some solu- 

tions obtained by Fox and Libby,  using these eigenvalues and norms. 

(2) To apply the results of a WKB approximation to obtain another approxi- 

mate formula for the eigenvalues which is extremely accurate indeed,  and 

should enable numerical calculation of the eigenfunctions and norms with 

little difficulty in a minimum of computer time.    (3)   To discuss the insulated 

wall problem of Fox and Libby further,  comparing the eigenfunction series 

solution with several other approximate solutions,  and with a new exact 

finite difference solution.    This comparison emphasizes the slow conver- 

gence of the eigenfunction solution near the initial station,  and the remark- 

able accuracy of a solution obtained using Lighthill's approximate method. 4 



II.    FORMULATION 

In sirriilarity variables i,   r\ the momentum and energy equations for 

unit Prandtl number and constant density-viscosity product are 

f        + ff       -   2 i (f   f e - f e £    )  =  0 (2. la) 

g       4  fg     -   2i {i   ne   -  it g  )   =  0 (2. lb) 

We are interested in initial value problems, where the non-dimensional 

velocity and enthalpy profiles  f   , g are given at some initial streamwise 

station |.  by F (r|) and G  (n).    The wall boundary conditions are the usual 

ones of zero velocity and either constant temperature (problem (2)) or zero 

heat transfer (problem (3)).    Thus 

Ti =  0:      f =  f    =  0; 1 1 

1-«:      f^-   1. 

i - if   fn = F*(n). 

g  = gw     for problem 2 

g    =  0      for problem 3 0i) 

g - 1 
(2.2) 

For the momentum problem (1), we perturb about the Blasius solution 

f0{l): 

C + Vo'   =  0'        £o(0>  " fö W - 0,        M«)  =   I (2.3) 

With the assumed solution as 

00 

f=£o^+ E £k(6'Ti): tk*ii*ti (2.4) 



the perturbation equations of (J. la) become for each ,
k.   ^       l.J   . .. 

[^♦'.^♦'."'•»««'.'^•'."'tj/'i.      "•5' 

where F,   is dependent on the previous perturbation terms   f  ,  o < j < k« K J 

In particular,   for f. ,   F.   = 0 and (2. S) is homogenous.    In addition,  for 

higher perturbations,   the homogenous solution can be used to find the par- 

ticular integral.    So we will focus on the solution of the homogenous equation, 

which will lead us to an eigenvalue problem when we separate variables. 

We therefore seek solutions  of the  homogenous  equation asso- 

ciated with (2. 5) in the form (dropping the subscript  k). 

-A  '"A 
f  =    V An(eA1)      n Nn(n) (2.6) 

and find N     and A must satisfy n n 7 

N"' +  £   N" + >f V +  (I -X)  f  "   N   =  0 (2.7) o o o 

Since  f    already satisfies all the boundary conditions .»ccording to (2. 2) and 

(2. 3) the boundary conditions on N are homogeneous: 

N(0)  = ISMO)  =  0, ISM«)   =  0 (2.8) 

As discussed  in Part I of Fox and Libby,      (2. 7)  and (2. 8)  define 

an eigenvalue problem,   the eigenvalues tobe chosen so that N'  approaches 

zero exponentially as   T) -* «.    (If only algebraic decay were required,   there 

would be solutions for any X. )   To make the functions  N well-defined.  Fox 

and Libby imposed the scaling condition 

-4- 



N  (0)  =   1 (2.9) 

For problems (2) and (3),  f is taken to be unperturbed Blasius 

function f (r|) in (2. lb) and the solution for  g   is assumed as 

g ■ g0(Tl)  + g' (S. n) (2.10) 

leading to the homogeneous equation 

g       + f    g     -   2ii     gt  =  0 (2.11) 

The function g  [r]) must satisfy 

11 i 
g        + f    g      = 0 "o o eo (2.12a) 

and we take it to satisfy also the boundary conditions (2. 2) on TI = 0, oo: 

T^O: 

T1- » 

^O    "    ^W 
for problem (1) 

g      =   0 6o for problem (2) 

g   — 1 Bo 

(2. 12b) 

It is thus completely determined,  and will make a contribution to the initial 

profile to be satisfied by g  .    However,  as a function of  r\,   g    satisfies homo- 

genous boundary conditions,   since g    satisfies all the inhomogenous ones, 

according to (2. 2) and (2. 12b). 

The homogenous equation (2. 11) has separable solutions of the form 

00 
Xn

(Z,i)/Z    (2,3) 

«    =   L.  Bn^/U Hn        '") (2.13) 

-5- 



where X(2,3)  and H(Z,3)   satisfy n n ' 

H" + f   H' +  A £  '   H = 0 U. 14) o o 

The boundary conditions on H  for the constant enthalpy wall,  problem (2) , 

are (including a convenient scaling) 

Problem (2):        H(2)(0)   = 0,   H(2)(x,)   =  0; [H(2),(0) =1]        (2. 15a) 

while for the adiabatic wall,  problem (3),   they are 

Problem (3):        H(3),(0) = 0.   H(3)(oo) = 0;   [H(3)(0) ■ 1] (2. 15b) 

These are two eigenvalue problems with the same differential equation but 

different boundary conditions at the wall.    Again the eigenvalues are deter- 

mined by the condition that H -• 0 exponentially as   r| — «.    These problems 

were discussed by Fox and Libby in Part 2. 

Problem (1) has also been studied by Stewartson,    who showed that 

(1) ' " X       -  2 is an eigenvalue with eigenfunction N    = (r) f     -f )/f     (0).    For 

problem (3),   Fox and Libby point out that X*      - I,  H(  ' = f "/f "(0). 

satisfies (2. 14) and (2. 15b),   yielding one explicit solution.    No correspond- 

ing result for either  A   or H  is known for problem (2). 

The standard Sturm-Liouville form of (2. 7) is obtained by recog- 
i 

nizing that f     is a solution (though it does not satisfy the boundary conditions) 

so the introduction of a new variable  u = (N/f    )    yields o 

[«CX")»i M* CX" - Vo'21u -o <2-i6) 



• 

which shows the weight function explicitly.    The orthogonality condition 

is then 

/ 

l4 /    " (1) 
(f        i     ) u   u     dn   = C  u'ö (2. 17 ' o    '  o   '    n   m     ' n        mn 

with C the norms for problem (1). n r i  • 

For problems (2) and (3),   (2. 14) can be put into standard form by 

dividing by f      and using (2. 3),   to yield 

(H'AJV   +  {Xi0*/t0") H = 0 (2.18) 

and the orthogonality condition and norms are 

/ 

(f '/i ") H H   d71 = C (2,3) ö (2.19) * o '  o   '    n   m    '        n mn 

The norms corresponding to the exact eigenfunctions quoted above are easily 

found by integration to be 

C (1) = C (3) = l/(2a2)  =  2. 267,     a H f  "(0) = 0. 4696   (2. 20) O O / \ i o 

which both agree with Fox and Libby's calculated values. 
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III.    EXTENSION OF KOTORYNSKI'S APPROXIMATE 
ANALYSIS 

Kotorynski studied these Sturm-Liouville problems by reducing 

them to the form in which the coefficient of the eigenvalue is unity. For 

problem (I),  this transformation is 

,,2 1/4 . 1/2 
w = (f0    /f0     ) u. i = J    (fj dr, (3.1) 

which reduces (2. 16) to 

d2w/dt2 +   [(i- q(t)]   w = 0. 

X  - 2 , 
7 f    f    " 3 o o 

q = 4 
f ,2 

2 2 

+     —      0 +  i    _2_ +     IT 3 +   4 
o o 

(3. 2a) 

(3. 2b) 

For problems 2 and 3,   the corresponding transformation is 

1/4 n 

v= (f '/f "2) H,       t =    /*    (f ') 
o '   o J 0 

1/2 dt], (3. 3) 

reducing (2. 18) to 

d2v/dt2 + L - p(t)J     v = 0 

i ,     f f  " 
x       1 loo 

K = X  - y ,        P = - T 4     f ,2 
o 

(3.4a) 

2 2 

o o 

The similarity of the equations is strongly evident,  the functions p,  q 

differing only in the coefficients of the first two terms. 

-9- 
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The behavior of the transformations and the functions p and q is 

determined by the well-known properties of the Blasius function f  ,  which 

are 

H -• 0:   f   — • »1  /2 ,       f '  — a^  ,       f  " ^ a ,       a = 0. 4696 (3. 5a) 

n-»:    f    ^„-^.f'^l.   f   "^Ae-^/2. 1 o '     n     o o ' 

ß =  f U't) dn   =  1. 217 

(3. 5b) 

This requires that 

n - 0:   t - 2 (at! 3)1//2/3 

.   1/2 

(3.5c) 

.   1/2- 
^oo; t-T!   .y*    [l  - (fj)       ]  dt!  ^T!   .y [l  - (fo')       Jdt!    (3. 5d) 

Thus we find from (3. 2) and (3. 4) that 

t - 0:   q -* 7/(36t2),       p - -5/(36t2) 

t — oo ; q — p — (t - ö) /4,       Ö = 
1/2      , 

/ ['.'V ] 
(3.6a) 

(3.6b) 

Kotorynski proposed a uniform approximation to p and q be 

obtained by using the terms dominant at t —0, «> ,   since the composite 

function would have the correct behavior at both ends.    Thus (3. 2a) and 

(3. 4a) are approximated by 

w = 0, d2w    .    [ 7 (t - 6)21 

36t' 

^i (3. 7a. b) 

v = 0 

10- 



• 

Actually,   Kotorynski did not include the 5 term in these equations. 

Without it,   they are solvable,   as he showed.     With it,  they are apparently 

not solvable in terms of known functions.     However,   the application of the 

WKB method for finding the eigenvalues is possible even when 6 is retained, 

and the 6 terms greatly improve the accuracy of the resulting eigenvalues, 

compared to those found by Kotorynski,   as we shall see in Section V. 

A comparison between the exact functions q and p of (3. 2b) and (3. 4b) 

and the approximations given in (3. 7a, b) is shown in Fig.   1.     They are plotted 

against r],  which is related to t by (3. 1).    The approximations are shown for 
5 

both 0=0 and 6=0. 425,  which is the value given in Stewartson.       For q, 

there is a small difference between the exact function and the approximation 

with 6 \ 0 for 0. 6 < r) < 3. 2,   but they agree quite well elsewhere.     If 5 = 0, 

the approximation is substantially in error for r) > 3.    For p,  there is very 

little error in the approximation when Ö ^ 0 to the scale of Fig.   1; if 6 = 0 

there are again substantial errors for TI > 3.    It is clear that using the 

correct asymptotic representation of f   makes a large improvement in the 

accuracy of approximation of p and q. 

Before the approximate equations can be solved,  the boundary 

conditions must be stated in terms of w and v.    If one uses the boundary 

conditions (2. 8) and (2. 9),  traces through the transformation to u,   (2. 16), 

and to w,  t (3. 1),   and uses (3. 5c),  one finds 

t _ 0:     w ^ (3t/2)7/6/2 al/3 (3.8a) 

-11 



Fig.   1 Comparison of exact and approximate representations of the 
functions q and p in the normal form of the Sturm-Liouville 
equations. 

12. 
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Fox and Libby    have shown that the asymptotic form of N1 is 

N1   -   (r1-p)A"1   exp    [-(n-ß^/Z j 

When this is transformed to w,   t using (3. 5b, d),  we find 

t —•;   w   ~ (t-ö^-1 exp  |-(t-ö)V4 I (3.8b) [-(t-ö)2^! 

Similarly,  the boundary conditions (2. 15a) and (2. 15b) for v       and v 

yield,   respectively,  for problems 2 and 3: 

t -. 0:   f1/6 v<2> - 0,   (3 a t/2)1/6   ±£- -   ^Kyg   - 4* 
dt (3at/2)5/6 a1/2 

(3. 9a) 

v(3) - (3 t/2 a2)1/6.    (3 at/2)1/6   ^ü   ^    a^A |Ji 9b) 
dt (3 t/2)2/3 

t^oo;    v   -.   (t.ö)^'1   exp   r.(t-ö)2/4] (3.9c) 

We may now proceed to the solution of (3. 7) for 6=0.    A change 

1/2 of variable t = 2        x permits them both to be written 

d2 y/dx2 +  [ 2^ - x2 + (4"1  - Q
2

)/X
2
]  ■ 0 

Problem 1:    a = + 2/3;        Problem 2.   3:   a = + l/3 (3.10) 

and a solution of this equation is given in Ref.   6,  p.   781,   Eq.   (22. 6. 18) 

as 2 
-x*/2     Q+l/2T   (a) ,  2. ~   e x        f   L (X  ), 

2jx = 2A-l = 4n + 2a+2,       n=0,   1,  2, 
(3. 11) 

where L (x   ) is the generalized Laguerre polynomial defined in 
2 

Ref.   6,   p.   775,   Eq.   (22. 3. 9),   as an n-th order polynomial in x .     In 

13- 



)     (3. 12) 

terms of t,  we may take as our solutions* 

(%■   vn
(2).  vn

(3,l   ■ ID  '",   D «'.   D^'U"' /4 .»^L <° V/2 \nn nijn n ni n 

with the D    to be determined by the boundary conditions. 

First we notice that this solution satisii   s the boundary condition 

■    r    .. /o   n\ u *•      i 4,      -t /4 k2n + a + l/2 as t —oo ; in fact (3. 12) becomes proportional to e t 

which,   from (3. 11),  agrees exactly with (3. 8b) and (3. 9c),    Second,  we 

find the behavior of w,  v and their derivatives as t -* 0 from Ref.  6, 

p.   775,   Eq.   (22. 3. 9): 

t — 0:   w,  v  - ta + 1/2   [r(n + a + l)/n! T (a 4  1) + O (t2)] (3. 13a) 

w',  v'  ~   (a + 1/2) t*'1'2   [T (n + a + l)/n!  T (a + 1) + O (t2)] (3. 13b) 

Third,   the eigenvalues are given in terms of a by (3. 11).     For each 

problem,   there are two possible values of a,   Eq.   (3. 10),   only one of 

which will satisfy the boundary conditions at t = 0. 

Kotorynski did not actually exhibit the resulting approximate 

eigenfunctions which satisfy the boundary conditions by evaluating the 

constants D ,  nor did he find the norms C .    However,  the expression n n r 

for the norms is easily found from the orthogonality properties of the 

L        .    Comparison of the definitions (2. 17) and (2. 19) with the trans- n 

formations (3. 1) and 3. 3) show that we need the integral 

2 
I s j     e-t

2/2   t2a+l      T   (a)   (t2/2)j d t 

*The solution given in (3. 12) can be compared with Kotorynski's Eq.   (3. 5). 
Our a is his 2Q,  but his argument of L does not have the factor l/2.    This 
represents either a different definition of L (which he does not give) or 
an eiror in his formula. 

-14- 



But Eq.   (22. 2. 12) on p.   775 of Ref.   6 shows that with z = t /2, 

i2 

•:./ -SC Q e z l^"] (z) dz =   r (n + a + l)/n! 

Thus the norms are related to the coefficients D    by 

C    = 2a D ^ T (n + a  + l)/n! n n ' 
(3. 14) 

The approximate solutions can now be found by choosing D   to 

satisfy the boundary conditions (3. 8a),   (3, 9a, b) as t — 0,  using the 

asymptotic forms from (3. 13a, b).    In the process of satisfying the boundary 

conditions,  one finds which one of the two a values for each problem, 

Eq.   (3. 10),  is the correct one; this determines the approximate value 

of the eigenvalues from Eq.   (3. 11).    The norms follow from Dn by 

(3. 14). 

The results of applying this process can be expressed 

compactly: 

JV      n<2)      n<3) a      ,   a      ,   a 2/3,   1/3,   -1/3 

(i)   +   1/2=   A(i)   =   2n   +   Q(i)  +3/2 n 

c(i) s   n! r(Q(i)H- 1) 
n r(a(i) + n + 1) 

Q(i)+l/2 (i). n!r(Qv';+ 1) 
ria^h n + f) 

-2-,   a,   1 

(i)  .       n 

n + a 
r(i) 

(i) n-1 

{<"■ c(2)   C(3H 
o o 

) (1)/ ,    V 2o(i)+ 

(3. 15a) 

(3. 15b) 

(3. 16) 

(3. 17a) 

r(Q(i)+1) |A_. a2. I) £.... j 
1. 52.   6. 05.   2. 04 (3. 17b) 

15. 



This completes the solution of the three problems when q,   p are approximated 

by the sum of their asymptotic expressions as t ->■ 0 and • ,   and the constant 

6 in the latter asymptote   is taken to be zero. 

-16. 



IV. CONVERGENCE OF HEAT TRANSFER SOLUTIONS 

We will now consider briefly the solution?  jf problems 2 and 3, 

concentrating on the convergence of the series solutions.    For this purpose, 

the approximate eigenvalues and normals obtained in the previous section 

will be used.    Although they are not particularly accurate for moderate n, 

they become accurate for large n,   and so are useful for convergence 

studies. 

In problem 2,   Fox and Libby    consider a flat plate which is held 

at a fixed enthalpy g   ,  up to ^. and then changed to g     .    A function g 

whi:h satisfies (2. 12) is e    = g       + (1-g      ) f    •    Then g* is given by (2. 13) ^O 6WO V        6WO       O S » 7   ^ ' 

(2) and (2. 14) with boundary conditions (2. 15a).     The coefficients B        are n 

determined by the initial condition on g,  which is that up to ^.,g is the 

Crocco integral g = g   , + (1-g   .) f   .    The initial condition on g* then &        &     fewl &wr   o * 
(2) determines B       as an expansion coefficient: 

(g   ,  - g     ) d-f ')■    E     B(2)     H(2) VBwl      '"wo' v      o *-'        n n 
o 

Using the orthogonality condition (2. 19) as well as the Sturm-Liouville 

form of the equation for H,   (2. 18),  the integral can be evaluated to give 

,(2) BK'     =    (g   ,-g     )/(x(2)     aC(2)>\ a^ f  "(0)= 0.4696 n ^wl  ''wo '   y   n n   / o 

The heat transfer at the wall is found using this in (2. 13) and differentiating 

(2. 10): 

g "-o-^-wo"-1 E^21 c«y>.eA1,V
,/^ ,«.„ 
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This a, r<-      svilh Fox and Libby.   Part 2,   Eqs.   (2. 26b) and (2. 27).  who 

take an iniliallv adiabalit  wall so u    , =   1. 

In problem  }.   the wall is still held at u    .up to I,,   but th<'n chancel 

to an adiabatic wall,   u     - 0.     In this ease y     -   1.   and the initial condition 
n <> 

on ij is the same Crocco integral as above.     Tht-refore,   the initial condition 

for Ibis problem,  using again the solution (2. 13) for g : .   is 

(3) (3) 
-(1-u   .)   (1-f    )   =      5"     H H wl o *^        n n 

The coefficient is found the same way as before,   although the result differs, 

since the H satisfies different boundary conditions. 

B W _-   .n-g j/u'3*   c(3)) 
n ^wl   '        n n 

Using this in (2. 13),   the wall temperature is found from (2, 10) as 

"-•wW-twl*   =E    (An3)     Ci3))'1      U/if**^ (4.2) 

This agrees with Fox and Libby, Part 2,   Eqs.   (2. 30b) and (2. 31),   when 

a misprinted subscript o is changed to 1 in the latter equation. 

We now consider the convergence of the- sums in (4. 1) and (4. 2), 

using (3. 15) and (3. 17) for X     and C  .     The ratio of the nf 1 to the n term, 

for large n,   becomes 

r   - [l ♦(a(i,.l)/n]ti/t 

For |>|.,   this converges by the ratio test,   although the convergence is 

very slow near |..     For ^ ■ ^-t  at the initial plane,   the series only 

converges if a       -  1 < - 1,   i. e. ,   a       < 0.     Thus the series (4. 2) for 

-18- 



(■2 \ 

problem 3 converges at | = |.,   since a        = l/3,   but the series (4. 1) for 

problem 2 diverges,   since a        =  l/3.     This is in accord with the indications 

of the numerical results in Fox and Libby,   Part 2,   where Fig,   4 shows 

g        rising steeply near the initial plane,   while Fig.   5 has a finite value for 

g     there, ^w 

Notice that if one differentiates  (4. 2) with respect to ^ ,   one brings 

down a X   ,   cancelling that term in the denominator.     Then the ratio of 

terms for large n is 

(1 + a(i)/n)i/%. 

which still yields convergence for * > £••   but now shows that problem 3 

(3) has a divergent streamwise derivative of g   ,   since a       = -1/3 > -1. 
'W 

This would indicate that the curves of Fig.   5 in Fox and Libby,   Part 2, 

should have an infinite slope at the initial plane a property that their solution 

does not exhibit in the Figure.     This is likely caused by the use of only 10 

terms of a slowly - converging series.    Section VI has a fuller discussion 

of problem 3,  where it is shown that the next 10 terms make a substantial 

contribution,  and that the slope at the initial plane is indeed very steep 

and probably infinite. 
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V.    ESTIMATION OF EIGENVALUES BY THE WKB METHOD 

The eigenvalues of (3. 7a, b) can be estimated by a technique well 

known in quantum mechanics for handling the Schrbdinger equation.     The 

advantage of this over Kotorynski's approach is that the correct behavior 

for large t,  which retains the constant Ö,   can be used.    This leads to a 

much more accurate estimate,   but does not easily give approximate 

eigenfunctions.    However,   once accurate eigenvalues are known,   the 

numerical integration of the exact equations (2. 7) or (2. 14) presents 

little difficulty.     The difficulties encountered by Fox and Libby are 

primarily associated with the necessity of finding the eigenvalues by 

trial and error. 

The idea of the WKB method is to solve (3. 7a, b) in three regions. 

-2 2 One is where t is very large,   so the t      term is negligible and (t-6)  /4>p.; 

in this region there are exponential-type solutions.     A second region is 

- 2 2 where t is still large,   so t       is neglected,   but (t-6)  /4 < fi so the solutions 

have sinusoidal character.     These two solutions are matched at the turning 

point t    where r o 

(to-5)Vf = H (5. 1) 

so as to eliminate the increasing exponential term,   and make the solution 

continuous.     (This matching procedure is described in detail in Ref.   6, 

for example. )   To satisfy the boundary conditions at t = 0,   a third solution 

-2 2 is found in the region where the t      term dominates (t-ö)  /4.    Once the 

boundary conditions are satisfied with this solution,   its asymptotic 

-21- 

PRECEDING PAGE BLANK 



expansion is joined to the solution in the second region; this joining gives 

a condition for determining the eigenvalues. 

This procedure can be carried out in general for (3, 7a, b) and the 

appropriate boundary conditions {3. 8a) or (3. 9a, b).    However the result 

is already available in a quadrature formula in Ref.   7,  as pointed out by 

Kotorynski,  who used it with 6 = 0 to verify his approximate eigenvalues 
7 

(3.15).    Titchmarsh    gives,   on page 151,   Eq.   (7.76),  a formula which 

for (3. 7a, b) becomes 

t.    ^ . ,1/2 

i/l-'^l dt =    ^5^-   +n + 0(—),      n= 0,1,2, c n 

where t    is defined in (5. 1).    By integrating the left side,  we obtain an 

equation for |i . 

Carrying at the integration by a trignometric substitution we find 

n ix2    .   -1 1 +   — sin (^T ffe 
6 
172" 

This shows ^    = O(n),   so we may keep terms in /    | through 0(|j. ). 

The result is 
■■II 

1/2 

^ + n + 0(l) 

3/2, 

26        1/2        63        -1/2 L ,   . ,     . o / !  \ u.    + — u.     '      -   -r=- a        '      =Q+l+2n+0(—) rn       TT    rn 127r rn n 

1/2 This is a cubic in p.     '    ,   but the last term on the left is quite small,   because 

Stewartson has given" 

6 = / f('.) 1/2 
dt! = 0. 425 
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Therefore,  we will ignore this term,  and solve the quadratic to gel 

fjin
1/2 =    (X   -  1/2)1/2 = - ö/TT   +    [(ö/TT)

2
 +  a  +   1  + Zn]1/2.   n = 0, 1.2,...   (5. 3) 

For 6=0,   (5. 3) agrees exactly with (3, 15),   which was the result 

obtained by Kotorynski.     The improvement obtained by including the 

6 term is remarkable,   as shown in Table I,  where the exact results of 

Fox and Libby are compared with those of Kotorynski, Eq.   (3, 15),   the 

present results,   Eq.   (5. 3),   and some additional exact results for problem 

3,   obtained by the present author.     Even at the lowest eigenvalues,   the 

error is only 7. 4% for problem 1,   1. 1% for problem 2,   and 2. 1% for 

problem 3.     This accuracy is a pleasant surprise since the WKB method 

is designed for the higher eigenvalues.     The errors are less than 1% 

beginning with the fourth eigenvalue for problem 1,   and the second for 

problems 2 and 3; they are less than 0. 1% after the thirteenth eigenvalue 

for problem 1 and the fourth for problems 2 and 3.    It is clear that the usse 

of (5. 3) will enable the numerical solution of (2. 7) or (2. 14) to be performed 

in one forward integration from r|  = 0. 

If Eqs.   (3. 7a, b) could be solved exactly with the 5 terms included, 

presumably very accurate norms could also be found,   but the present 

author has been unable to find such a solution in terms of known functions. 

The norms obtained by the Kotorynski approximation,   (3. 17),   are shown for 

problem 3 in Table II,   together with exact values calculated by the present 

author.     The errors vary from 10% at n = 0 to 1% at n =  19.     (The first 

10 exact values of C    in Table II differ in the second decimal place from n r 

those given on p.   438 of Fox and Libby,     Part 2.     They are believed to be 
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TABLi. I. 1 

Eigenvalues for Problem 1,   a = 2/3 

1 n \ (exact)2 \n(Eq. 3.15)3 
\B{*<i.   5.3) 1   n X   (exact)2 Xn(Eq. 3. 15)3 Xn(Eq.5.3) 

0 2 2. 167 1.852 10 20.984 22. 167 20.943 

1 3.774 4. 167 3. 684 11 22.924 24. 1 67 22.886 

2 5. 627 6, 167 5. 558 12 24. 862 26. 167 24.832 

3 7.517 8. 167 7.453 13 26.865 28. 167 26.780 

4 9.408 10. 167 9. 361 14 28.755 30. 167 28.729 

5 11.328 1 2. 1 67 11.278 15 30.711 32. 167 30. 680 

6 13. 252 14. 167 13.202           ! 16 32. 667 34. 167 32. 633 

7 15.171 1 6. 1 67 15.132 17 34. 620 36. 167 34. 587 

8 17.099 18. 167 17.066 18 36. 567 38. 167 36.542 

9 19.040 20. 1 67 19.003 19 38. 520 40. 167 38.499 
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TABLE I. 2 

Eigenvalues for Problem 2,   a = 1/3 

n >   (exact)1 VEq.   3. 15)3 V^- 5-3) n An(exact)1 Xn(Eq.   3. 15)3 
>n(Eq.   5.3) 

0 1.572 I. 833 1. 555 5 10.96 11.833 10.958 

1 3. 385 3. 833 3, 375 6 12.88 13.833 12.881 

2 5.25 5. 833 5. 244 7 14.81 15.833 14.810 

3 7. 14 7, 833 7. 136 8 16.74 17.833 16. 743 

4 9.05 9.833 9.042 9 18. 68 19.833 18.680 
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TABLE I. 3 

Eigenvalues for Problem 3,  a -  1/3 

n Xn( exact)* Xn(Eq.   3. 15)3 Xn(Eq.   5.3) n Xn(Exact)a Xn(Eq.   3. 15)3 Xn(Eq.   5.3) 

0 1 1.167 0,979 10 19.978 21. 167 19.973 

1 2.774 3.167 2.760 11 21.920 23. 167 21.915 

2 4. 629 5. 167 4.618 12 23. 864 25. 167 23. 859 

3 6.513 7. 167 6.504 13 25. 811 27. 167 25. 806 

4 8.414 9. 167 8.406 14 27.759 29, 167 27.754 

5 10.326 11. 1 67 10.319 15 29. 709 31. 167 29. 704 

6 12. 247 13. 167 12.240 16 31. 661 33. 167 31. 666 

7 14, 173 15, 167 14. 166 17 33. 614 35. 167 33. 610 

8 16. 104 17, 167 16.098 18 35. 569 37. 167 35. 565 

9 18.040 19. 167 18.034 19 37.525 39. 167 37. 520 

"These exact results have been calculated by the present author.    The first 10 agree 
with Fox and Libby,  Part 2,  to within 0.01 

* 
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TABLE II 

Norms for Problem 3,   a = -1/3 

n C  (exact) C  (Eqs.   3. 17)3 

n 
C  (exact) Cn(Eqs.   3. 17)3 

0 2.268 2.035 10 6.077 6.00 

1 3. 184 3.045 11 6. 262 6.19 

2 3.772 3. 650 12 6.438 6. 36 

3 4.219 4. 11 13 6. 604 6. 53 

4 4.586 4.49 14 6.763 6.69 

5 4.903 4.81 15 6,915 6. 84 

6 5. 182 5.09 16 7.059 6.99 

7 5. 435 5.35 17 7. 198 7. 12 

8 5, 665 5.58 18 7. 333 7. 26 

9 5.878 5.80 19 7.461 7.39 
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g 
more accurate,   since the method of Nachtsheim and Swigert    was used 

to obtain them,  and the criterion for stopping the integration was the 

constancy of C    itself as r)  -»•, ) 

t 
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VI.    THE INSULATED WALL PROBLEM 

Problem 3,   a flat plate with constant wall condition g   , up to 

£. and insulated (e        = 0) for £ > £.,  has had some previous attention. •l ^rjw *      'I r 

9   10 In particular,   Durgin  '       made a thorough experimental and theoretical 

study,   reviewing the previous solutions,  all of which were approximate. 

He concluded that the laminar experimental results for wall temperature 

distribution in the insulated region were in very good agreement with the 
4 

theory based on Lighthill's approximate method,     thus giving it credence 

as the best approximation to the exact solution.     The solution of Fox and 

Libby,     given in (4. 2),   is an exact solution expressed in series form and 

may be compared with the Lighthill-Durgin solution. 

Strangely enough,   no numerical solution to the partial differential 

equation of the problem seems to have been published up to this time, 

although such a solution would represent another exact solution to serve 

as a standard of comparison not only for the Lighthill-Durgin approximation, 

but for the rate of convergence of the Fox-Libby series. 

Such a numerical solution has been obtained as a by-product of a 

computer program developed for another problem. It solves the energy 

equation derived from (2. 2) when f = f  (n): ^ o   ' 

g        + f  g     - 2£ f    gt   = 0 (6. 1) 
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The boundary and initial conditions are: 

i > ii-     g   (n = o) = o, gd!-«) - i 

I = ii-     gi ■ gwl + (i-gwl) f0 

The parameter g   . is eliminated by the transformation 

G= (g-l)/(gwl -  1) 

and the streamwise coordinate is simplified by introducing a new 

coordinate 

z = In d/e.) 1/2 z > 0 for | > ^. 

Then (6. 1) and (6. 2) become 

G       + f   G    - f    G    = 0 r| r| o     T| O      z 

z > 0:   G     (r| = 0) = 0,   G (r| 

z  = 0:   G. = 1   - f 
i o 

) = 0 

(6, 2a) 

(6. 2b) 

(6. 3) 

(6.4) 

(6. 5) 

(6. 6a) 

(6. 6b) 

This is a problem with no parameters.     The new streamwise coordinate 

z seems to be the natural one for initial value problems  (where ^.  ^  0) 

because it takes the operator 2 | 8 / 8   ^ into 9 /d z.    It is rather surpris- 

ing that it does not seem to have had any widespread use in numerical 

solutions of boundary layer problems. 

The solution to (6. 5),   (6, 6) was obtained by use of a Crank- 

12 Nicolson implicit finite difference scheme. The r|  derivatives are 

averages of central difference formulas at the known station z and the 

new station z + Az,   while the z derivative is a forward difference.     This 
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leads at each z to a set of linear inhomogenous algebraic equations,   each of 

which contains the unknown at only 3 successive r|  points.     The matrix of 

coefficients is in tri-diagonal form,   and the equations are easily solved 

by successive elimination,   starting at rj  = 0,   moving to the edge of the 

boundary layer,  and then sweeping back toward the wall again.     The 

12 algorithm is easily formalized. 

The boundary condition G = 0 at r| —■ «o   is satisfied at a finite 

value r|   ,   chosen so that f    is very near its asymptotic value of unity.     We 

used n     = 4. 8 as the edge.     The wall condition is on G     which presents 1 e 0 1 

some complications,   since the central difference at the wall involves a 

point inside,  while that one step off the wall involves the unknown G   , 

But the differential equation (6. 5) at the wall,  and the boundary condition 

(6. 6a) together tell us that 

G        = 0,    G =0 
r|W ^ ^lw 

Therefore,   a Taylor series expansion from the wall r|  = 0 to the first 

station r|  = A r|  shows that 

Gw = G(AT1) + ©(AT]2) 

To the order of accuracy of the central difference formulas then,   G     = G(Ari), 

and this relation makes the algebraic solution of the difference equations 

determinate,  if we start with the equation centered at r|  = A r|  and end with 

the one at r|  = r|     -Ar«,   taking G(r|   ) = 0. 

By this scheme,   solutions have been obtained with r|     = 4, 8,   A r|  = 

0, 05,   for Az = 5x10"   .   5x10'   ,   and 5xl0'5.     The coefficient functions,   f  , o 

f     were generated first,   by solving (2. 3) with f  "(0) = a = 0. 4696 with the 

same A r|.     The results for G     are shown in Fig.   2 over the range 0-r'z5T0, 13, 

-31- 



0      .01     .02     .03     .04    .05     .06     .07     .08    .09    .10       .11       .12 

2-^>i(e/e4)l/2 

Fig.  2        Wall enthalpy parameter for an insulated wall following a wall 
of constant enthalpy ratio gwi. 
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which corresponds to ls^/^.i'1, 3.     This short distance near the initial 

plane has been singled out to study,   because the behavior near the initial 

plane is the most stringent test of any approximate solution. 

The numerical solutions seem to approach G     = 1 smoothly,   but 

with a very steep slope,   which can well be interpreted as infinite at z = 0, 

The Fox-Libby series,   (4. 2),   is also shown through 10 terms by 

the X symbols.     They show good agreement with the numerical solutions 

(within 10%) for z ä 0. 09,   but fall below it for smaller z,   reaching only 

G     = 0. 7426 at z = 0.     (This solution was calculated using the exact w * 

eigenvalues given in Table  I. 3,   and the exact norms shown in Table II. ) 

Extending the series to 20 terms yields the results  shown on Fig.   2 by the 

solid diamonds.     The solution is improved,   but still only reaches G     = 0. 8 

at z = 0.    Clearly,   many terms are needed to obtain accuracy near the 

initial plane because of the slow convergence of the series (4. 2),   although 

we proved in Section V that it did converge and could presumably yield 

G     =  1  at z - 0 eventually. w , 

The solution to this problem based on Lighthill's method was worked 

9 
out by Durgin.       The velocity profile is approximated by a linear function 

f     - ar|,   VonMises variables are used,   and the equation is solved by a 

Laplace Transform in the streamwise coordinate.     One may then invert 

4 
back to the physical plane in two ways.     Lighthill    finds heat transfer as 

an integral over the wall temperature distribution.     For the present 

problem we want the wall temperature as an integral over the heat 

transfer.    Into this integral we substitute the shear,   and the heat 

transfer of the similar boundary layer over the front of the plate 0<*<^.. 
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For this latter heat transfer we use the value obtained from the Lighthill 

approximation for a constant temperature wall, to be consistert with the 

approximation being used for |>|i.    The result of integration is then, 

for e>ei. 

sm ill 
(Ui) 3/4 

w TT r du 
1/3   "     T/T 

u (1 -u)  ' 
(6. 7) 

which was given by Durgin, 

While this is an incomplete Beta function, its tabulation can be 

easily accomplished by using Simpson's rule on the integral, after re- 

moving the singularity of the integrand.     To accomplish this we let 

8/3 i/i. = (cos $)'0'J and find 

w 
.      2 sin ff/3 30 2/3 

+ /    [(cot^)1/3 ^-1/3]  d^ (6.8) 

The result of such a calculation is shown in Fig,   2 as the + symbols. 

They show remarkable agreement with the numerical solution right up 

to z = 0,   including the rapid increase in slope.    From (6. 7) the slope 

near z = 0 is 

dG 
w 

dz 
(3/2)1^3 sin 7r/3 

TT  Z 
2/3 

0. 316 
2/3 (6. 9) 

which shows the strength of the singularity. 

As {/{. —■ oo ,  we find from (6. 7) that 

,    .       /, t       -1/2 .     -1/2 
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which may be compared with the corresponding result from the Fox-Libby 

series,  which is just the first term,   i. e. 

i l~> 

(6.10) Gw - (eA.)"1^. 268 = 0. 440 (S/e.)-1/2 

Since the latter result is presumably exact,   we see the Lighthill- 

Durgin solution is some 6% low for large %.     So its accuracy is likely 

to be high over the whole range, 

Durgin already found (6, 7) to be in good agreement with his 

experimental results,   and now we have shown it to be also in good agree- 

ment with our exact numerical solution.     This leaves little doubt that the 

simple integral (6. 7) is the most useful available solution to the present 

problem.    One may speculate on why a solution developed for large 

Prandtl number should be so accurate for unity Prandtl number.     We 

already know that the Lighthill approximation for heat transfer predicts 

nearly the correct Prandtl number dependence,   the l/3 power,   although 

a somewhat erroneous constant.     But the relation leading to (6. 7) involves 

the heat transfer divided by the l/3 power of the Prandtl number,   so in 

fact,   (6. 7) is obtained as independent of the Prandtl number,   and holds for 

any value of that parameter.    It is likely to give a good answer when com- 

pared with numerical solutions obtained for nonunity Prandtl numbers. 

(In fact,   Durgin's experiments were for air,   which has a Prandtl number 

about 0. 72. )   One must only be careful to define G    to be (T    -T      )/(T    ,-T      ) 7 w w     aw '      wl      aw 

where T       is the adiabatic wall temperature,   so the correct limit is aw v 

approached for downstream.     In the present case of unit Prandtl number, 

T       is the same as the free stream stagnation temperature,   so our aw fr r 

definition of G   ,   (6. 3),   is consistent with this. 
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As an example of integral-type solutions,   we may quote that of 

1 3 Libby and Morduchow,       which Fox and Libby also plot in their Part 2, 
9 

Fig.   5,   and Durgin   quotes.     For Prandtl number unity and constant 

density-viscosity product,   this result is 

Gw   =   0. 476 (l/l.r1/2 + 0. 524 (e/|.)"7' " 

This is also plotted as the triangle symbols in Fig. 2. It clearly has 

the wrong behavior near z = 0, and is 8% high as ^ -• w according to 

(6. 10). In the intermediate range, starting about %/%. = 2. 5, it is in 

rather good agreement with 10 terms of (4. 2), better than Fox and Libby 

show in their figure, where they seem to have an error in the Libby- 

Morduchow curve. But in any event, it is less accurate than (6. 7), and 

hardly any more convenient. 
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VII.    CONCLUSIONS 

By pursuing further Kotorynskl' s uniform approximation    it has been 

possible to obtain explicit expressions for the eigenfunctions and their norms 

in three boundary layer eigenvalue problems.    The convergence of the Fox- 

Libby eigenfunction series solution to two heat transfer problems has then 

been investigated,   using these norms and the eigenvalues obtained by 

Kotorynski.    The series both converge away from the initial plane with a 

convergence factor |./|,  but at the initial plane,  the series for a discontin- 

uous wall temperature diverges.     The series for an insulated wall following 

a constant temperature wall converges at the initial plane,   but its stream- 

wise derivative diverges there. 

We have shown that the approximate eigenvalues obtained by Kotorynski 

can be greatly improved by using the WKB method.    This improvement is 

obtained by using a more accurate approximation to the Blasius function for 

large r\,   i.e. ,   using f    -»ri-ß instead of f    — r|.    While the Kotorynski type 

of explicit solution cannot be obtained if ß is kept,  the WKB method for finding 

the eigenvalues can be easily applied.     The resulting eigenvalues are lound 

as the solution of a quadratic equation,   and are very accurate.     Their use 

enables new eigenfunctions to be found by a simple forward integration of the 

differential equation,   with little,   if any,   iteration necessary. 

Finally,   we have studied the insulated wall problem using the cigen- 

9 
lunction series,   a quadrature formula developed by Durgin    based on Lighthill's 

4 13 approximation,     an integral method of Libby and Morduchow,        and an exact 
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numerical solution of the partial differential equaticn obtained by the present 

author. Comparison is made near the initial plane,   where the numerical 

solution has a very steep slope as it approaches the constant wall tempera- 

ture value.    The Lighthill-Durgin solution agrees almost perfectly with the 

-2/3 numerical solution in this region,   having a slope proportional to (|/|.-1)"        . 

The' Fox-Libby series differs considerably near the initial plane,  even with 

20 terms,  attesting to its slow convergence there.    The integral solution also 

is inaccurate there. 

As | — oo far downstream,  the Lighthill-Durgin solution and the inte- 

gral solution both have the same decay as the (presumably exact) series 

solution,   but the former is 6% lower and the latter 8% higher than the series. 

We conclude that the Lighthill-Durgin quadrature formula is an excel- 

lent approximation to the exact solution over the whole range.    This is true » 

not only at Prandtl number unity,   but also at other values,   since this solu- 

tion is independent of that parameter when referred  to  the adiabatic wall                              ' 

9 10 temperature.    This result is in accord with Durgin' s experimental work, 

which was performed in air,   with Prandtl number 0. 72.    He found the Lighthill- 

Durgin solution to be in very good agreement with his laminar data. 
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